\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{(d+e x)^3} \, dx\) [1914]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 54 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^3} \, dx=\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 \left (c d^2-a e^2\right ) (d+e x)^3} \]

[Out]

2/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(-a*e^2+c*d^2)/(e*x+d)^3

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {664} \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^3} \, dx=\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 (d+e x)^3 \left (c d^2-a e^2\right )} \]

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^3,x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(3*(c*d^2 - a*e^2)*(d + e*x)^3)

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^m*((a +
b*x + c*x^2)^(p + 1)/((p + 1)*(2*c*d - b*e))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] &&
 EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 \left (c d^2-a e^2\right ) (d+e x)^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.80 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^3} \, dx=\frac {2 ((a e+c d x) (d+e x))^{3/2}}{3 \left (c d^2-a e^2\right ) (d+e x)^3} \]

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^3,x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(3/2))/(3*(c*d^2 - a*e^2)*(d + e*x)^3)

Maple [A] (verified)

Time = 3.04 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.07

method result size
gosper \(-\frac {2 \left (c d x +a e \right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}{3 \left (e x +d \right )^{2} \left (e^{2} a -c \,d^{2}\right )}\) \(58\)
trager \(-\frac {2 \left (c d x +a e \right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}{3 \left (e x +d \right )^{2} \left (e^{2} a -c \,d^{2}\right )}\) \(58\)
default \(-\frac {2 \left (c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{3 e^{3} \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{3}}\) \(65\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^3,x,method=_RETURNVERBOSE)

[Out]

-2/3*(c*d*x+a*e)/(e*x+d)^2/(a*e^2-c*d^2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.46 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.67 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^3} \, dx=\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d x + a e\right )}}{3 \, {\left (c d^{4} - a d^{2} e^{2} + {\left (c d^{2} e^{2} - a e^{4}\right )} x^{2} + 2 \, {\left (c d^{3} e - a d e^{3}\right )} x\right )}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^3,x, algorithm="fricas")

[Out]

2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*x + a*e)/(c*d^4 - a*d^2*e^2 + (c*d^2*e^2 - a*e^4)*x^2 + 2
*(c*d^3*e - a*d*e^3)*x)

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^3} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{\left (d + e x\right )^{3}}\, dx \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**3,x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(d + e*x)**3, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^3} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e*(a*e^2-c*d^2)>0)', see `assu
me?` for mor

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^3} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^3,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%%{1,[0,0,2]%%%},[4]%%%}+%%%{%%{[%%%{-4,[0,1,1]%%%},0]:
[1,0,%%%{-1

Mupad [B] (verification not implemented)

Time = 10.26 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.07 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^3} \, dx=-\frac {2\,\left (a\,e+c\,d\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{3\,\left (a\,e^2-c\,d^2\right )\,{\left (d+e\,x\right )}^2} \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(d + e*x)^3,x)

[Out]

-(2*(a*e + c*d*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(3*(a*e^2 - c*d^2)*(d + e*x)^2)